Nature designs tough collagen: explaining the nanostructure of collagen fibrils.

نویسنده

  • Markus J Buehler
چکیده

Collagen is a protein material with superior mechanical properties. It consists of collagen fibrils composed of a staggered array of ultra-long tropocollagen (TC) molecules. Theoretical and molecular modeling suggests that this natural design of collagen fibrils maximizes the strength and provides large energy dissipation during deformation, thus creating a tough and robust material. We find that the mechanics of collagen fibrils can be understood quantitatively in terms of two critical molecular length scales chi(S) and chi(R) that characterize when (i) deformation changes from homogeneous intermolecular shear to propagation of slip pulses and when (ii) covalent bonds within TC molecules begin to fracture, leading to brittle-like failure. The ratio chi(S)/chi(R) indicates which mechanism dominates deformation. Our modeling rigorously links the chemical properties of individual TC molecules to the macroscopic mechanical response of fibrils. The results help to explain why collagen fibers found in nature consist of TC molecules with lengths in the proximity of 300 nm and advance the understanding how collagen diseases that change intermolecular adhesion properties influence mechanical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization

Mineralized collagen fibrils are highly conserved nanostructural building blocks of bone. By a combination of molecular dynamics simulation and theoretical analysis it is shown that the characteristic nanostructure of mineralized collagen fibrils is vital for its high strength and its ability to sustain large deformation, as is relevant to the physiological role of bone, creating a strong and t...

متن کامل

Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies.

Collagen is a protein material with intriguing mechanical properties - it is highly elastic, shows large fracture strength and plays a crucial role in making Nature's structural materials tough. Collagen based tissues consist of collagen fibrils, each of which is composed out of a staggered array of ultra-long tropocollagen molecules extending to several hundred nanometers. Albeit the macroscop...

متن کامل

Discerning the Subfibrillar Structure of Mineralized Collagen Fibrils: A Model for the Ultrastructure of Bone

Biomineralization templated by organic molecules to produce inorganic-organic nanocomposites is a fascinating example of nature using bottom-up strategies at nanoscale to accomplish highly ordered multifunctional materials. One such nanocomposite is bone, composed primarily of hydroxyapatite (HA) nanocrystals that are embedded within collagen fibrils with their c-axes arranged roughly parallel ...

متن کامل

Effect of Low-Power Helium-Neon Laser Irradiation on Collagen Fibril Thickness of Incisized Medial Collateral Ligament of Knee in Rat

Purpose: The aim of the present study is to investigate the effect of low-power Helium-Neon laser (LPL) on collagen fibril thickness of incisized medial collateral ligament of knee joint (MCL) in rat. Materials and Methods: MCL of right hind limb of 35 male adult sprague Dawley rat under general anesthesia were transversly incisized. Rats were randomly divitded into normal, control, first lase...

متن کامل

Collagen self-assembly and the development of tendon mechanical properties.

The development of the musculoskeleton and the ability to locomote requires controlled cell division as well as spatial control over deposition of extracellular matrix. Self-assembly of procollagen and its final processing into collagen fibrils occurs extracellularly. The formation of crosslinked collagen fibers results in the conversion of weak liquid-like embryonic tissues to tough elastic so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 33  شماره 

صفحات  -

تاریخ انتشار 2006